سرعة الصوت

قياسات الصوت
ضغط الصوت p
مستوى ضغط الصوت (SPL)
Particle velocity v
Particle velocity level (SVL)
   (Sound velocity level)
Particle displacement ξ
Sound intensity I
Sound intensity level (SIL)
Sound power Pac
Sound power level (SWL)
Sound energy density E
Sound energy flux q
Acoustic impedance Z
سرعة الصوت c

سرعة الصوت تعتمد سرعة الصوت على الوسط الذي ينتقل خلاله الصوت. وخصائص الوسط التي تحدد سرعة الصوت هي الكثافة وقابلية الانضغاط. والكثافة هي مقدار الكتلة الموجودة في وحدة الحجم من المادة. وتقيس قابلية الانضغاط مدى سهولة كبس المادة في حيز ضيق. وكلما زادت الكثافة وزادت قابلية الانضغاط، قلت سرعة الصوت.

تأثير دوبلر: التغير الظاهري في طبقة الصوت الذي تنتجه الأجسام المتحركة. على سبيل المثال، طبقة صوت صفارة القطار تبدو أعلى وهو يقترب وأقل وهو يبتعد. عندما يقترب القطار (الشكل الأعلى) تتقارب موجات الصوت من الصفارة بعضها إلى بعض، مما ينتج عنه طبقة صوت ظاهرية أعلى بالنسبة لمستمع على الرصيف. وعندما يبتعد القطار (الشكل الأسفل)، تنتشر الموجات وتتباعد عن بعضها مما ينتج عنه طبقة صوت ظاهرية أقل. أما ركاب القطار، فيسمعون صوت صفارته عند طبقة صوت واحدة
U.S. Navy F/A-18 breaking the sound barrier. The white halo is formed by condensed water droplets which are thought to result from a drop in air pressure around the aircraft (see Prandtl-Glauert Singularity).[1][2]
الوسط السرعة بالأمتار في الثانية
الألومنيوم 5,000
الخشب 4,110
الزجاج 4,540
الطوب 3,650
الفولاذ 5,200
ماء البحر عند 25°م 1,531
الماء المقطر عند 25°م 1,496
الهواء عند 15°م 340


تكون السوائل والأجسام الصلبة بصفة عامة أكثر كثافة من الهواء، ولكنها أيضًا أقل من الهواء بكثير في قابلية الانضغاط، ولذلك، فإن الصوت ينتقل بسرعة أكبر خلال السوائل والأجسام الصلبة. ولذلك نجد مثلاً أن سرعة الصوت في الماء نحو أربعة أمثال سرعته في الهواء، وسرعته في الفولاذ نحو 15 مرة مقدار سرعته في الهواء. وتقاس سرعة الصوت في الهواء عادة عند مستوى سطح البحر، وعند 15°م من الحرارة. وعند هذه الدرجة، ينتقل الصوت بسرعة 340 م/ث. ولكن سرعة الصوت تزداد بزيادة درجة الحرارة. فسرعة الصوت في الهواء، على سبيل المثال، 386 م/ث عند درجة الحرارة 100°م. تكون السوائل والأجسام الصلبة بصفة عامة أكثر كثافة من الهواء، ولكنها أيضًا أقل من الهواء بكثير في قابلية الانضغاط، ولذلك، فإن الصوت ينتقل بسرعة أكبر خلال السوائل والأجسام الصلبة. ولذلك نجد مثلاً أن سرعة الصوت في الماء نحو أربعة أمثال سرعته في الهواء، وسرعته في الفولاذ نحو 15 مرة مقدار سرعته في الهواء. وتقاس سرعة الصوت في الهواء عادة عند مستوى سطح البحر، وعند 15°م من الحرارة. وعند هذه الدرجة، ينتقل الصوت بسرعة 340 م/ث. ولكن سرعة الصوت تزداد بزيادة درجة الحرارة. فسرعة الصوت في الهواء، على سبيل المثال، 386 م/ث عند درجة الحرارة 100°م.

انكسار موجات الصوت سرعة الصوت أقل بكثير من سرعة الضوء. يتحرك الضوء في الفراغ بسرعة 299,792 كم/ث، أي بنحو مليون مرة مقدار سرعة الصوت. ونتيجة لذلك، نرى وميض البرق أثناء العواصف، قبل أن نسمع صوت الرعد. وإذا راقبت نجارًا يطرق بالمطرقة من مسافة بعيدة، فإنك سترى المطرقة تطرق الخشب قبل أن تسمع صوتها.

ولعلك لاحظت أن طبقة صوت صفارة القطار تبدو أعلى والقطار يقترب، وتبدو أقل بعد أن يمر القطار ويبتعد. تنتقل موجات الصوت التي تحدثها الصفارة بسرعة ثابتة في الهواء، بغض النظر عن سرعة القطار. ولكن، بينما يقترب القطار، فإن كل موجة تالية تحدثها الصفارة تقطع مسافة أقصر إلى آذاننا. ولذلك فإن الموجات تصل بمعدل أكبر، أي بتردد أكبر، وهنا تبدو طبقة الصوت أعلى. وعندما يبتعد القطار، فإن كل موجة تالية تقطع مسافة أطول إلى الأذن، فتصل الموجات بمعدل أقل، أي بتردد أقل، وتبدو طبقة الصوت أقل. ويسمى هذا التغير الظاهري في طبقة الصوت، الذي تحدثه الأجسام المتحركة تأثير دوبلر. ولا يتغير عمق الصوت بالنسبة لمستمع في القطار.

الحيود انتشار الموجات إلى الخارج عندما تمر على طرف عائق أو (حافته) أو خلال فتحة. الحيود يمكِن صوت السيارة (في الشكل أعلاه) من أن يُسمع حول أركان المباني عند التقاطع.

وتطير الطائرات النفاثة أحيانًا بسرعات تفوق سرعة الصوت. وتنتج الطائرة ذات السرعة التي تفوق سرعة الصوت موجات صدمية، وهي اضطرابات ضغط قوية تنشأ وتتراكم حول الطائرة. ويسمع الناس على الأرض ضجيجًا عاليًا، يُعرف باسم الفرقعة الصوتية (دوي اختراق حاجز الصوت)، عندما تعبر فوقهم موجات صدمية من الطائرة. انظر: الديناميكا الهوائية.


الانعكاس

إذا صحْتَ في اتجاه جدار كبير من الطوب، من مسافة عشرة أمتار على الأقل، فإنك ستسمع صدى صوتك. ينتج الصدى عندما تنعكس موجات الصوت من الجدار إلى أذنيك. وعمومًا، ينعكس جزء من الصَّوت، عندما تصطدم موجاته في وسط ما بجسم كبير من وسط آخر، كما حدث في حالة الموجات في الهواء بعد اصطدامها بجدار الطوب.والصوت الذي لا ينعكس يخترق الوسط الجديد. وتحدِّد سرعة الصوت في كل من الوسطين وكثافة الوسطين مقدار الانعكاس. وإذا كان الصوت ينتقل بنفس السرعة تقريبًا في كل من الوسطين، وكان لكل منهما نفس الكثافة تقريبًا، فإن ما ينعكس من الصوت يكون ضئيلاً، وسيخترق أغلب الصوت الوسط الجديد. وعلى عكس ذلك، ينعكس أغلب الصوت إذا كان هنالك اختلاف كبير في سرعة الصوت في الوسطين وكذلك في كثافتيهما. وتنتقل موجات الصوت في الهواء بسرعة تقل كثيرًا عن سرعتها في الطوب، كما أن كثافة الطوب تزيد كثيرًا عن كثافة الهواء، ولذلك ينعكس أغلب صوتك عندما تصيح باتجاه جدار الطوب.

الرنين تقوية الصوت: في هذا الشكل الشوكة الرنانة في حالة رنين مع عمود الهواء في الأنبوب. تنتقل موجات الصوت من الشوكة في عمود الهواء إلى أسفل ثم تنعكس من سطح الماء. تشكل الموجات الأصلية والموجات المنعكسة معًا موجات ثابتة تنتج عنها زيادة في ارتفاع الصوت

الانكسار

عندما تغادر موجات الصوت وسطًا وتدخل وسطًا آخر تختلف سرعتها، ويتغير اتجاهها. وينتج هذا التغيير في الاتجاه عن التغيُّر في سرعة الموجات، ويسمى انكسارًا. وإذا كانت سرعة موجات الصوت في الوسط الثاني أقل، تنكسر الموجات نحو العمودي. والعمودي خط وهمي يعامد الفاصل بين الوسطين. وإذا كانت سرعة الصوت في الوسط الثاني أكبر ، فإن الموجات تنكسر بعيدًا عن العمودي.

الضربات التغيرات الدورية في الارتفاع التي تحدث نتيجة تراكب وتداخل موجات الصوت من نبرتين مختلفتين. في التداخل البناء تتقابل الضغوط فتعطي صوتًا أكثر ارتفاعًا. وفي التداخل الهدام تقابل الضغوط التخلخلات فتعطي صوتًا أضعف.

ويمكن أن تنكسر موجات الصوت أيضًا، إذا كانت سرعة الصوت تتغير من نقطة إلى نقطة في نفس الوسط. ففي هذه الحالة، تنحني الموجات نحو المنطقة ذات السرعة الأقل. وقد تكون لاحظت أن الصوت يُسمع من مسافة أبعد في الليل، مقارنة بنهار يوم ساطع الشمس. فأثناء النهار، يكون الهواء القريب من الأرض أدفأ من الهواء الذي يعلوه، ولذلك فإن موجات الصوت تنحني بعيدًا عن سطح الأرض نحو الهواء الأكثر برودة حيث تكون سرعتها أقل. وينتج عن انحناء الموجات بهذه الكيفية ضعف الصوت قرب سطح الأرض. أما في الليل، فإن الهواء القريب من سطح الأرض ويكون هو الأكثر برودة، فتنحني موجات الصوت نحو الأرض، مما يمكِّن من سماع الصوت القريب من الأرض من مسافات أبعد.

الحُيُود

تنتشر موجات الصوت التي تنتقل بمحاذاة مبنى مبتعدة حول ركن المبنى. وعندما تمر موجات الصوت عبر الباب، تنتشر حول حافته. ويُسمَّى انتشار الموجات حول حافة عائق تمر به، أو عند مرورها خلال فتحة ما الحُيُود. ويحدث الحيود كلما مرت موجات الصوت بعائق أو فتحة، ولكنه يصبح أوضح ما يكون إذا كان الطول الموجي للصوت طويلاً بالمقارنة مع حجم العائق أو الفتحة. ويُمكِّنك الحيود من سماع الصوت حول ركن، حتى في غياب مسار مستقيم من مصدر الصوت إلى أذنيك. انظر: الحيود.


الرنين

هو تقوية الصوت. ويحدث عندما تنتج قوة صغيرة متكررة اهتزازات أكبر وأكبر في جسم ما. ولكي يحدث الرنين، يلزم أن يكون للقوة المتكررة المبذولة تردد يساوي تردد رنين الجسم. وتردد الرنين هو تقريبًا التردد الذي يهتز به الجسم طبيعيًا، إذا تعرض لاضطراب ما. وقد قيل إن بعض المغنِّين في المسرحيات الغنائية يمكنهم أن يحطموا كوبًا زجاجيًا بغناء نغمة ذات تردد مساوٍ لتردد رنين الكوب، حيث تكبر الاهتزازات التي تحدث في الكوب، ويكبر الرنين حتى ينكسر الكوب.

ومن الممكن إيضاح الرنين تجريبيًا بوساطة شوكة رنانة مهتزة، يمسك بها المرء فوق أنبوب مفتوح من ناحية ومغلق من الناحية الأخرى. فإذا كان طول الأنبوب ربع الطول الموجي للصوت الصادر عن الشوكة، فإن الموجات ستنتقل إلى أسفل الأنبوب وتنعكس من القاع. وفي هذه الحالة، تشكل الموجات المنعكسة مع الموجات الأصلية نمطًا موجيًا يبدو ساكنًا. وتسمى مثل هذه الأنماط الموجات الثابتة. وعندما تتكون الموجات الثابتة في الأنبوب، يكون عمود الهواء داخل الأنبوب في حالة رنين مع الشوكة الرنانة. وتجعل الموجات الثابتة في الأنبوب الهواء المحيط يهتز باتساع أكبر مما ينتج عنه صوت أكثر ارتفاعًا.

ويزيد الرنين من ارتفاع الصوت الذي تحدثه الكثير من الآلات الموسيقية. فالآلات الهوائية، على سبيل المثال، تنتج الرنين بنفس كيفية الشوكة الرنانة والأنبوب. تنشأ الموجات الثابتة في عمود الهواء داخل الآلة، فتجعله في حالة رنين مع الاهتزازات عند فتحة الفم، مكبرًا بذلك صوت الآلة.


الضربات

عندما تصدر نبرتان بترددين مختلفتين اختلافًا طفيفًا في الوقت نفسه، فإن ما يسمعه المرء يكون صوتًا واحدًا يرتفع وينخفض على فترات منتظمة. وتسمى هذه التغيرات الدورية في ارتفاع الصوت الضربات. وتنتج الضربات لأن موجات الصوت من النبرتين تتراكبان وتتداخلان. ويقال عن تداخل الموجات المشتركة إنه تداخل بنّاء إذا تطابقت الضغوط مع الضغوط والتخلخلات مع التخلخلات. ففي هذه الحالة، تقوِّي الموجات بعضها بعضًا منتجة صوتًا أكثر ارتفاعًا. ويكون التداخل هدامًا إذا تطابقت الضغوط مع التخلخلات. وفي هذه الحالة يتلاشى الصوت أو يكون ضعيفًا. وبسبب الاختلاف الطفيف في التردد، تتعاقب فترات التداخل البناء والتداخل الهدام، فيرتفع الصوت ثم ينخفض، منتجًا الضربات.

يساوي عدد الضربات في الثانية، ويسمى تردد الضربات، الفرق بين تردديْ النبرتين. فعند صدور نبرة بتردد 256 هرتز، ونبرة بتردد 257 هرتز في الوقت ذاته، على سبيل المثال، يسمع المرء ضربة واحدة في كل ثانية.

الجداول

Effect of temperature
\vartheta in °C c in m·s-1 ρ in kg·m-3 Z in N·s·m-3
−10 325.2 1.342 436.1
−5 328.3 1.317 432.0
0 331.3 1.292 428.4
+5 334.3 1.269 424.3
+10 337.3 1.247 420.6
+15 340.3 1.225 416.8
+20 343.2 1.204 413.2
+25 346.1 1.184 409.8
+30 349.0 1.165 406.3
\vartheta is the temperature in °C
c is the speed of sound in m·s-1
ρ is the density in kg·m-3
Z is the characteristic acoustic impedance in N·s·m-3 (Z=ρ·c)

Given normal atmospheric conditions, the temperature, and thus speed of sound, varies with altitude:

Altitude Temperature m·s-1 km·h-1 mph knots
Sea level 15 °C (59 °F) 340 1225 761 661
11 000 m−20 000 m
(Cruising altitude of commercial jets,
and first supersonic flight)
−57 °C (−70 °F) 295 1062 660 573
29 000 m (Flight of X-43A) −48 °C (−53 °F) 301 1083 673 585


↑اقفز إلى القسم السابق

أنظر أيضاُ

  • Second sound
  • Sound barrier
  • SOFAR channel
  • Underwater acoustics
↑اقفز إلى القسم السابق
آخر تعديل بتاريخ 22 نوفمبر 2013، 12:25