إنتالبية البخر

(تم التحويل من حرارة تبخر)
Temperature-dependency of the heats of vaporization for Water, Methanol, Benzene, and Acetone

إنتالبية البخر enthalpy of vaporization، (ورمزها ) وتـُعرف أيضاً ب"حرارة التبخر" أو حرارة التبخير heat of vaporization، هي الطاقة المطلوبة لتحويل كم ما من المادة إلى الحالة الغازية.

ويتم تعريفها على أنها الحرارة اللازمة لتبخير مول واحد من المادة عند نقطة غليانها تحت الضغط القياسي (101.325 kPa). ويتم التعبير عن حرارة التبخر بالكيلو جول لكل مول (kJ/mol) واستخدام الكيلو جول لكل كيلو جرام (kJ/kg) أيضا جائز, ولكن ليس شائع الاستخدام. كما أن هناك تعبيرات أخرى يمكن استخدامها مثل وحدة حرارة بريطانية(Btu/lb).

ونظرا لأن التبخر هو عكس عملية التكثف, فإن المصطلح حرارة التكثف يستخدم أيضا. ويتم تعريف الأخير على أنه الحرارة المنطلقة عندما يتم تكثيف مول واحد من المادة عند درجة غليانها في ظروف الضغط القياسية .

حرارة تبخر الماء تقريبا 2260 (kJ/kg) والذي يساوي تقريبا 40.8 (kJ/mol). وهذه كمية كبيرة نسبيا وهي خمسة أضعاف الطاقة اللازمة لتسخين الماء من صفر إلى 100 درجة مئوية.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

الوحدات

The enthalpy of condensation (or heat of condensation) is by definition equal to the enthalpy of vaporization with the opposite sign: enthalpy changes of vaporization are always positive (heat is absorbed by the substance), whereas enthalpy changes of condensation are always negative (heat is released by the substance).


خلفية تحريك حراري

Molar heat content of zinc above 298.15 K and at 1 atm pressure, showing discontinuities at the melting and boiling points. The enthalpy of melting (ΔH°m) of zinc is 7323 J/mol, and the enthalpy of vaporization (ΔH°v) is 115 330 J/mol.

The enthalpy of vaporization can be written as

It is equal to the increased internal energy of the vapor phase compared with the liquid phase, plus the work done against ambient pressure. The increase in the internal energy can be viewed as the energy required to overcome the intermolecular interactions in the liquid (or solid, in the case of sublimation). Hence helium has a particularly low enthalpy of vaporization, 0.0845 kJ/mol, as the van der Waals forces between helium atoms are particularly weak. On the other hand, the molecules in liquid water are held together by relatively strong hydrogen bonds, and its enthalpy of vaporization, 40.65 kJ/mol, is more than five times the energy required to heat the same quantity of water from 0 °C to 100 °C (cp = 75.3 J/K·mol). Care must be taken, however, when using enthalpies of vaporization to measure the strength of intermolecular forces, as these forces may persist to an extent in the gas phase (as is the case with hydrogen fluoride), and so the calculated value of the bond strength will be too low. This is particularly true of metals, which often form covalently bonded molecules in the gas phase: in these cases, the enthalpy of atomization must be used to obtain a true value of the bond energy.

An alternative description is to view the enthalpy of condensation as the heat which must be released to the surroundings to compensate for the drop in entropy when a gas condenses to a liquid. As the liquid and gas are in equilibrium at the boiling point (Tb), ΔvG = 0, which leads to:

As neither entropy nor enthalpy vary greatly with temperature, it is normal to use the tabulated standard values without any correction for the difference in temperature from 298 K. A correction must be made if the pressure is different from 100 kPa, as the entropy of a gas is proportional to its pressure (or, more precisely, to its fugacity): the entropies of liquids vary little with pressure, as the compressibility of a liquid is small.

These two definitions are equivalent: the boiling point is the temperature at which the increased entropy of the gas phase overcomes the intermolecular forces. As a given quantity of matter always has a higher entropy in the gas phase than in a condensed phase ( is always positive), and from

,

the Gibbs free energy change falls with increasing temperature: gases are favored at higher temperatures, as is observed in practice.

Vaporization enthalpy of electrolyte solutions

Estimation of the enthalpy of vaporization of electrolyte solutions can be simply carried out using equations based on the chemical thermodynamic models, such as Pitzer model[1] or TCPC model.[2]

قيم مختارة


العناصر

إنتالبيات تبخر العناصر - kJ/mol

Group → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
↓ Period
1 H
0.44936

He
0.0845
2 Li
145.92
Be
292.40

B
489.7
C
355.8
N
2.7928
O
3.4099
F
3.2698
Ne
1.7326
3 Na
96.96
Mg
127.4

Al
293.4
Si
300
P
12.129
S
1.7175
Cl
10.2
Ar
6.447
4 K
79.87
Ca
153.6
Sc
314.2
Ti
421
V
452
Cr
344.3
Mn
226
Fe
349.6
Co
376.5
Ni
370.4
Cu
300.3
Zn
115.3
Ga
258.7
Ge
330.9
As
34.76
Se
26.3
Br
15.438
Kr
9.029
5 Rb
72.216
Sr
144
Y
363
Zr
581.6
Nb
696.6
Mo
598
Tc
660
Ru
595
Rh
493
Pd
357
Ag
250.58
Cd
100
In
231.5
Sn
295.8
Sb
77.14
Te
52.55
I
20.752
Xe
12.636
6 Cs
67.74
Ba
142
*
Hf
575
Ta
743
W
824
Re
715
Os
627.6
Ir
604
Pt
510
Au
334.4
Hg
59.229
Tl
164.1
Pb
177.7
Bi
104.8
Po
60.1
At
114
Rn
16.4
7 Fr
n/a
Ra
37
**
Rf
n/a
Db
n/a
Sg
n/a
Bh
n/a
Hs
n/a
Mt
n/a
Ds
n/a
Rg
n/a
Uub
n/a
Uut
n/a
Uuq
n/a
Uup
n/a
Uuh
n/a
Uus
n/a
Uuo
n/a

* لانثنيدات Lanthanide La
414
Ce
414
Pr
n/a
Nd
n/a
Pm
n/a
Sm
n/a
Eu
n/a
Gd
n/a
Tb
n/a
Dy
n/a
Ho
n/a
Er
n/a
Tm
n/a
Yb
n/a
Lu
n/a
** أكتينيدات Ac
n/a
Th
514.4
Pa
n/a
U
n/a
Np
n/a
Pu
n/a
Am
n/a
Cm
n/a
Bk
n/a
Cf
n/a
Es
n/a
Fm
n/a
Md
n/a
No
n/a
Lr
n/a
0-10 kJ/mol 10-100 kJ/mol 100-300 kJ/mol >300 kJ/mol
 


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

مواد شائعة أخرى

مواد شائعة مرتبة أبجدياً:

المركـَّب حرارة التبخر (kJ mol-1) حرارة التبخر (kJ kg-1)
أمونيا 23.35 1371
بيوتان 21.0 362
إثانول 38.6 841
هيدروجين 0.46 451.9
مثان 8.19 510
مثانول 34.5 1104
پروپان 15.7 356
فوسفين 14.6 429.4
ماء 40.65 2257

انظر أيضاً

المصادر

  • Sears, Zemansky et al., University Physics, Addison-Wessley Publishing Company, Sixth ed., 1982, ISBN 0-201-07199-1

أنظر أيضا

  1. ^ Ge, Xinlei; Wang, Xidong (20 May 2009). "Estimation of Freezing Point Depression, Boiling Point Elevation, and Vaporization Enthalpies of Electrolyte Solutions". Industrial & Engineering Chemistry Research. 48 (10): 5123. doi:10.1021/ie900434h.
  2. ^ Ge, Xinlei; Wang, Xidong (2009). "Calculations of Freezing Point Depression, Boiling Point Elevation, Vapor Pressure and Enthalpies of Vaporization of Electrolyte Solutions by a Modified Three-Characteristic Parameter Correlation Model". Journal of Solution Chemistry. 38 (9): 1097–1117. doi:10.1007/s10953-009-9433-0. ISSN 0095-9782. S2CID 96186176.