ثابت پلانك
Planck constant | |
---|---|
الرموز الشائعة | |
الوحدة الدولية | joule per hertz (joule second) |
وحدات أخرى | electronvolt per hertz (electronvolt second) |
In الوحدة الدولية الأساسية | kg⋅m2⋅s−1 |
بعد قياسي SI | |
البعد |
Reduced Planck constant | |
---|---|
الرموز الشائعة | |
الوحدة الدولية | joule-second |
وحدات أخرى | electronvolt-second |
In الوحدة الدولية الأساسية | kg⋅m2⋅s−1 |
بعد قياسي SI | |
اشتقاقات من كميات أخرى | |
البعد |
قيم h | الوحدات |
---|---|
6.62606896(33)×10−34 | ج·ث |
4.13566733(10)×10−15 | ڤ.إ·ث |
6.62606896(33)×10−27 | erg·ث |
قيم ħ | الوحدات |
1.054571628(53)×10−34 | ج·ث |
6.58211899(16)×10−16 | ڤ.إ·ث |
1.054571628(53)×10−27 | erg·ث |
ثابت بلانك Planck constant، هو ثابت فيزيائي له الرمز ,[1] وهو يستخدم لوصف الكوانتا "أصغر مقدار للطاقة" فهو بذلك يلعب الدور الرئيسي في ميكانيك الكم. يعود اكتشافه إلى العالم الألماني ماكس بلانك عام 1900 م. يقابل هذا الثابت قيمة أخرى هي قيمة هذا الثابت مقسومة على و رمزه ويلفظ "آش بار" و يسمى عادة ثابت ديراك نسبة للعالم باول ديراك.
The constant was postulated by Max Planck in 1900 as a proportionality constant needed to explain experimental black-body radiation.[2] Planck later referred to the constant as the "quantum of action".[3] In 1905, Albert Einstein associated the "quantum" or minimal element of the energy to the electromagnetic wave itself. Max Planck received the 1918 Nobel Prize in Physics "in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta".
In metrology, the Planck constant is used, together with other constants, to define the kilogram, the SI unit of mass.[4] The SI units are defined in such a way that, when the Planck constant is expressed in SI units, it has the exact value = 6.62606957(29)×10−34 J s.[5][6]
التاريخ
أصل الثابت
Planck's constant was formulated as part of Max Planck's successful effort to produce a mathematical expression that accurately predicted the observed spectral distribution of thermal radiation from a closed furnace (black-body radiation).[7] This mathematical expression is now known as Planck's law.
In the last years of the 19th century, Max Planck was investigating the problem of black-body radiation first posed by Kirchhoff some 40 years earlier. Every physical body spontaneously and continuously emits electromagnetic radiation. There was no expression or explanation for the overall shape of the observed emission spectrum. At the time, Wien's law fit the data for short wavelengths and high temperatures, but failed for long wavelengths.[7] Also around this time, but unknown to Planck, Lord Rayleigh had derived theoretically a formula, now known as the Rayleigh–Jeans law, that could reasonably predict long wavelengths but failed dramatically at short wavelengths.
Approaching this problem, Planck hypothesized that the equations of motion for light describe a set of harmonic oscillators, one for each possible frequency. He examined how the entropy of the oscillators varied with the temperature of the body, trying to match Wien's law, and was able to derive an approximate mathematical function for the black-body spectrum,[2] which gave a simple empirical formula for long wavelengths.
Planck tried to find a mathematical expression that could reproduce Wien's law (for short wavelengths) and the empirical formula (for long wavelengths). This expression included a constant, , which is thought to be for Hilfsgrösse (auxiliary variable),[8] and subsequently became known as the Planck constant. The expression formulated by Planck showed that the spectral radiance of a body for frequency ν at absolute temperature T is given by
- ,
where is the Boltzmann constant, is the Planck constant, and is the speed of light in the medium, whether material or vacuum.[9][10][11]
The spectral radiance of a body, , describes the amount of energy it emits at different radiation frequencies. It is the power emitted per unit area of the body, per unit solid angle of emission, per unit frequency. The spectral radiance can also be expressed per unit wavelength instead of per unit frequency. In this case, it is given by
- ,
showing how radiated energy emitted at shorter wavelengths increases more rapidly with temperature than energy emitted at longer wavelengths.[12]
Planck's law may also be expressed in other terms, such as the number of photons emitted at a certain wavelength, or the energy density in a volume of radiation. The SI unit of is W·sr−1·m−2·Hz−1, while that of is W·sr−1·m−3.
Planck soon realized that his solution was not unique. There were several different solutions, each of which gave a different value for the entropy of the oscillators.[2] To save his theory, Planck resorted to using the then-controversial theory of statistical mechanics,[2] which he described as "an act of desperation".[13] One of his new boundary conditions was
to interpret UN [the vibrational energy of N oscillators] not as a continuous, infinitely divisible quantity, but as a discrete quantity composed of an integral number of finite equal parts. Let us call each such part the energy element ε;
— Planck، On the Law of Distribution of Energy in the Normal Spectrum[2]
With this new condition, Planck had imposed the quantization of the energy of the oscillators, "a purely formal assumption ... actually I did not think much about it ..." in his own words,[14] but one that would revolutionize physics. Applying this new approach to Wien's displacement law showed that the "energy element" must be proportional to the frequency of the oscillator, the first version of what is now sometimes termed the "Planck–Einstein relation":
Planck was able to calculate the value of from experimental data on black-body radiation: his result, 6.55×10−34 J⋅s, is within 1.2% of the currently defined value.[2] He also made the first determination of the Boltzmann constant from the same data and theory.[15]
التطور والتطبيق
The black-body problem was revisited in 1905, when Lord Rayleigh and James Jeans (together) and Albert Einstein independently proved that classical electromagnetism could never account for the observed spectrum. These proofs are commonly known as the "ultraviolet catastrophe", a name coined by Paul Ehrenfest in 1911. They contributed greatly (along with Einstein's work on the photoelectric effect) in convincing physicists that Planck's postulate of quantized energy levels was more than a mere mathematical formalism. The first Solvay Conference in 1911 was devoted to "the theory of radiation and quanta".[16]
الأثر الكهروضوئي
The photoelectric effect is the emission of electrons (called "photoelectrons") from a surface when light is shone on it. It was first observed by Alexandre Edmond Becquerel in 1839, although credit is usually reserved for Heinrich Hertz,[17] who published the first thorough investigation in 1887. Another particularly thorough investigation was published by Philipp Lenard (Lénárd Fülöp) in 1902.[18] Einstein's 1905 paper[19] discussing the effect in terms of light quanta would earn him the Nobel Prize in 1921,[17] after his predictions had been confirmed by the experimental work of Robert Andrews Millikan.[20] The Nobel committee awarded the prize for his work on the photo-electric effect, rather than relativity, both because of a bias against purely theoretical physics not grounded in discovery or experiment, and dissent amongst its members as to the actual proof that relativity was real.[21][22]
Before Einstein's paper, electromagnetic radiation such as visible light was considered to behave as a wave: hence the use of the terms "frequency" and "wavelength" to characterize different types of radiation. The energy transferred by a wave in a given time is called its intensity. The light from a theatre spotlight is more intense than the light from a domestic lightbulb; that is to say that the spotlight gives out more energy per unit time and per unit space (and hence consumes more electricity) than the ordinary bulb, even though the color of the light might be very similar. Other waves, such as sound or the waves crashing against a seafront, also have their intensity. However, the energy account of the photoelectric effect did not seem to agree with the wave description of light.
The "photoelectrons" emitted as a result of the photoelectric effect have a certain kinetic energy, which can be measured. This kinetic energy (for each photoelectron) is independent of the intensity of the light,[18] but depends linearly on the frequency;[20] and if the frequency is too low (corresponding to a photon energy that is less than the work function of the material), no photoelectrons are emitted at all, unless a plurality of photons, whose energetic sum is greater than the energy of the photoelectrons, acts virtually simultaneously (multiphoton effect).[23] Assuming the frequency is high enough to cause the photoelectric effect, a rise in intensity of the light source causes more photoelectrons to be emitted with the same kinetic energy, rather than the same number of photoelectrons to be emitted with higher kinetic energy.[18]
Einstein's explanation for these observations was that light itself is quantized; that the energy of light is not transferred continuously as in a classical wave, but only in small "packets" or quanta. The size of these "packets" of energy, which would later be named photons, was to be the same as Planck's "energy element", giving the modern version of the Planck–Einstein relation:
Einstein's postulate was later proven experimentally: the constant of proportionality between the frequency of incident light and the kinetic energy of photoelectrons was shown to be equal to the Planck constant .[20]
البنية الذرية
في 1912 John William Nicholson developed[24] an atomic model and found the angular momentum of the electrons in the model were related by h/2π.[25][26] Nicholson's nuclear quantum atomic model influenced the development of Niels Bohr 's atomic model[27][28][26] and Bohr quoted him in his 1913 paper of the Bohr model of the atom.[29] Bohr's model went beyond Planck's abstract harmonic oscillator concept: an electron in a Bohr atom could only have certain defined energies
where is the speed of light in vacuum, is an experimentally determined constant (the Rydberg constant) and . This approach also allowed Bohr to account for the Rydberg formula, an empirical description of the atomic spectrum of hydrogen, and to account for the value of the Rydberg constant in terms of other fundamental constants. In discussing angular momentum of the electrons in his model Bohr introduced the quantity , now known as the reduced Planck constant as the quantum of angular momentum.[29]
مبدأ الريبة
The Planck constant also occurs in statements of Werner Heisenberg's uncertainty principle. Given numerous particles prepared in the same state, the uncertainty in their position, , and the uncertainty in their momentum, , obey
where the uncertainty is given as the standard deviation of the measured value from its expected value. There are several other such pairs of physically measurable conjugate variables which obey a similar rule. One example is time vs. energy. The inverse relationship between the uncertainty of the two conjugate variables forces a tradeoff in quantum experiments, as measuring one quantity more precisely results in the other quantity becoming imprecise.
In addition to some assumptions underlying the interpretation of certain values in the quantum mechanical formulation, one of the fundamental cornerstones to the entire theory lies in the commutator relationship between the position operator and the momentum operator :
where is the Kronecker delta.
طاقة الفوتون
The Planck relation connects the particular photon energy E with its associated wave frequency f:
This energy is extremely small in terms of ordinarily perceived everyday objects.
Since the frequency f, wavelength λ, and speed of light c are related by , the relation can also be expressed as
طول موجة دي برولي
In 1923, Louis de Broglie generalized the Planck–Einstein relation by postulating that the Planck constant represents the proportionality between the momentum and the quantum wavelength of not just the photon, but the quantum wavelength of any particle. This was confirmed by experiments soon afterward. This holds throughout the quantum theory, including electrodynamics. The de Broglie wavelength λ of the particle is given by
where p denotes the linear momentum of a particle, such as a photon, or any other elementary particle.
The energy of a photon with angular frequency ω = 2πf is given by
while its linear momentum relates to
where k is an angular wavenumber.
These two relations are the temporal and spatial parts of the special relativistic expression using 4-vectors.
الميكانيكا الإحصائية
Classical statistical mechanics requires the existence of h (but does not define its value).[30] Eventually, following upon Planck's discovery, it was speculated that physical action could not take on an arbitrary value, but instead was restricted to integer multiples of a very small quantity, the "[elementary] quantum of action", now called the Planck constant.[31] This was a significant conceptual part of the so-called "old quantum theory" developed by physicists including Bohr, Sommerfeld, and Ishiwara, in which particle trajectories exist but are hidden, but quantum laws constrain them based on their action. This view has been replaced by fully modern quantum theory, in which definite trajectories of motion do not even exist; rather, the particle is represented by a wavefunction spread out in space and in time.[32] Related to this is the concept of energy quantization which existed in old quantum theory and also exists in altered form in modern quantum physics. Classical physics cannot explain quantization of energy.
Dimension and value
The Planck constant has the same dimensions as action and as angular momentum. In SI units, the Planck constant is expressed with the unit joule per hertz (J⋅Hz−1) or joule-second (J⋅s).
The above values have been adopted as fixed in the 2019 redefinition of the SI base units.
Since 2019, the numerical value of the Planck constant has been fixed, with a finite decimal representation. This fixed value is used to define the SI unit of mass, the kilogram: "the kilogram [...] is defined by taking the fixed numerical value of h to be 6.62607015×10−34 when expressed in the unit J⋅s, which is equal to kg⋅m2⋅s−1, where the metre and the second are defined in terms of speed of light c and duration of hyperfine transition of the ground state of an unperturbed caesium-133 atom ΔνCs."[35] Technologies of mass metrology such as the Kibble balance measure refine the value of kilogram applying fixed value of the Planck constant.
Significance of the value
The Planck constant is one of the smallest constants used in physics. This reflects the fact that on a scale adapted to humans, where energies are typical of the order of kilojoules and times are typical of the order of seconds or minutes, the Planck constant is very small. When the product of energy and time for a physical event approaches the Planck constant, quantum effects dominate.[36]
Equivalently, the order of the Planck constant reflects the fact that everyday objects and systems are made of a large number of microscopic particles. For example, in green light (with a wavelength of 555 nanometres or a frequency of 540 THz) each photon has an energy E = hf = 3.58×10−19 J. That is a very small amount of energy in terms of everyday experience, but everyday experience is not concerned with individual photons any more than with individual atoms or molecules. An amount of light more typical in everyday experience (though much larger than the smallest amount perceivable by the human eye) is the energy of one mole of photons; its energy can be computed by multiplying the photon energy by the Avogadro constant, NA = 6.02214129(27)×1023 mol−1[37], with the result of 216 kJ, about the food energy in three apples.[بحاجة لمصدر]
Reduced Planck constant
In many applications in quantum physics, the quantity, called the reduced Planck constant and equal to appears; it is denoted (pronounced h-bar[38] ).[39][40]
Many of the most important equations, relations, definitions, and results of quantum mechanics are customarily written using the reduced Planck constant rather than the Planck constant , including the Schrödinger equation, momentum operator, canonical commutation relation, Heisenberg's uncertainty principle, and Planck units.[41]
The fundamental equations look simpler when written using as opposed to , and it is usually rather than that gives the most reliable results when used in order-of-magnitude estimates. For example, using dimensional analysis to estimate the ionization energy of a hydrogen atom, the relevant parameters that determine the ionization energy are the mass of the electron , the electron charge , and either the Planck constant or the reduced Planck constant :
Names and symbols
The reduced Planck constant is known by many other names: reduced Planck's constant[43] [44] ), the rationalized Planck constant[45] [46] [47] (or rationalized Planck's constant[48] [49] ,[50] the Dirac constant[51] [45] [52] (or Dirac's constant[53] [54] [55] ), the Dirac [56][57] (or Dirac's [58] ), the Dirac [59] (or Dirac's [60] [61] ), and h-bar.[62][63] It is also common to refer to this as "Planck's constant"[64] [أ] while retaining the relationship .
By far the most common symbol for the reduced Planck constant is . However, there are some sources that denote it by instead, in which case they usually refer to it as the "Dirac "[90] [91] (or "Dirac's "[92] ).
History
The combination appeared in Niels Bohr's 1913 paper,[93] where it was denoted by .[26][ب] For the next 15 years, the combination continued to appear in the literature, but normally without a separate symbol.[94][ت] Then, in 1926, in their seminal papers, Schrödinger and Dirac again introduced special symbols for it: in the case of Schrödinger,[106] and in the case of Dirac.[107] Dirac continued to use in this way until 1930,[108] when he introduced the symbol in his book The Principles of Quantum Mechanics.[108] [109]
وحدات وقيم
ثابت بلانك هو عبارة عن واحدة للطاقة (جول,J) مضروبة بواحدة الزمن (ثانية,s) و بالتالي هي بالمحصلة واحدة عمل (جول.ثانية,J.s). قيمة ثابت بلانك هي:
و باستخدام الالكترون-فولط كواحدة لقياس الطاقة يكون لدينا:
بالمقابل فإن قيمة ثابت ديراك هي:
وباستخدام الالكترون-فولط كواحدة للطاقة:
حيث :
ولادة ثابت بلانك
تم طرح ثابت بلانك في البداية من قبل العالم ماكس بلانك لتفسير سلوك إشعاع الجسم الأسود ، حيث أن الفرضية الأساسية لقانون بلانك تعتبر أن إصدار الاشعاع الكهرطيسي بواسطة الجسم الأسود يمكن تمثيله بشكل هزاز توافقي مع طاقة مكممة على الشكل التالي:
حيث : هي الطاقة المكممة للفوتونات التي تملك تواتر (هرتز) أو تواتر زاوي (راديان/ثانية).
الاستخدام
يستخدم ثابت بلانك في وصف التكميم فعلى سبيل المثال: إذا كان لدينا حزمة من الضوء ذات طاقة وتواتر فإنها قادرة أن تأخذ قيم محددة :
حيث
و هذه هي فكرة التكميم التي أزالت مفهوم الطاقة المستمرة.
ثابت بلانك يظهر أيضاً وبقوة في مبدأ الشك (عدم اليقين) لهايزنبرغ و الذي ينص على أنه " لا يمكننا أن نحدد بدقة و بآن معاً موضع وسرعة جسيم، فإذا استطعنا تحديد سرعة هذا الجسيم تعذر علينا حساب موضعه بدقة والعكس صحيح". و الصياغة الرياضية لهذا المبدأ هي:
ويمكننا أيضا صياغته بالشكل:
الارتياب في كمية التحرك.
الارتياب في الموقع.
ثابت بلانك.
انظر أيضا
- مفاهيم أساسية في ميكانيكا الكم
- وحدات پلانك
- Wave–particle duality
- قانون ستيگلر
- Committee on Data of the International Science Council
- International System of Units
- Introduction to quantum mechanics
- List of scientists whose names are used in physical constants
- Wave–particle duality
ملاحظات
- ^ Notable examples of such usage include Landau and Lifshitz[65] and Griffiths,[66] but there are many others, e.g.[67][68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86][87][88] [89]
- ^ Bohr denoted by the angular momentum of the electron around the nucleus, and wrote the quantization condition as , where is a positive integer. (See the Bohr model.)
- ^ Here are some papers that are mentioned in[94] and in which appeared without a separate symbol: [95] [96] [97] [98] [99] [100][101] [102][103][104].[105]
الهوامش
- ^ "Planck constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Archived from the original on 2022-05-27. Retrieved 2023-09-03.
- ^ أ ب ت ث ج ح Planck, Max (1901), "Ueber das Gesetz der Energieverteilung im Normalspectrum", Ann. Phys. 309 (3): 553–63, doi: , Bibcode: 1901AnP...309..553P, http://www.physik.uni-augsburg.de/annalen/history/historic-papers/1901_309_553-563.pdf, retrieved on 2008-12-15. English translation: "On the Law of Distribution of Energy in the Normal Spectrum". Archived from the original on 2008-04-18.". "On the Law of Distribution of Energy in the Normal Spectrum" (PDF). Archived from the original (PDF) on 2011-10-06. Retrieved 2011-10-13.
- ^ "Max Planck Nobel Lecture". Archived from the original on 2023-07-14. Retrieved 2023-07-14.
- ^ قالب:SIbrochure9th
- ^ أ ب "CODATA Value: Planck constant". The NIST Reference on Constants, Units, and Uncertainty. US National Institute of Standards and Technology. June 2011. Retrieved 2011-06-23.
{{cite web}}
: Cite has empty unknown parameter:|month=
(help); External link in
(help)|work=
- ^ "Resolutions of the 26th CGPM" (PDF). BIPM (in الإنجليزية البريطانية). 2018-11-16. Archived from the original (PDF) on 2018-11-19. Retrieved 2018-11-20.
- ^ أ ب Bitter, Francis; Medicus, Heinrich A. (1973). Fields and particles. New York: Elsevier. pp. 137–144.
- ^ Boya, Luis J. (2004). "The Thermal Radiation Formula of Planck (1900)". arXiv:physics/0402064v1.
- ^ Planck, M. (1914). The Theory of Heat Radiation. Masius, M. (transl.) (2nd ed.). P. Blakiston's Son. pp. 6, 168. OL 7154661M.
- ^ Chandrasekhar, S. (1960) [1950]. Radiative Transfer (Revised reprint ed.). Dover. p. 8. ISBN 978-0-486-60590-6.
- ^ Rybicki, G. B.; Lightman, A. P. (1979). Radiative Processes in Astrophysics. Wiley. p. 22. ISBN 978-0-471-82759-7. Archived from the original on 2020-07-27. Retrieved 2020-05-20.
- ^ Shao, Gaofeng; et al. (2019). "Improved oxidation resistance of high emissivity coatings on fibrous ceramic for reusable space systems". Corrosion Science. 146: 233–246. arXiv:1902.03943. Bibcode:2019Corro.146..233S. doi:10.1016/j.corsci.2018.11.006. S2CID 118927116.
- ^ Kragh, Helge (1 December 2000), Max Planck: the reluctant revolutionary, PhysicsWorld.com, https://physicsworld.com/a/max-planck-the-reluctant-revolutionary/
- ^ Kragh, Helge (1999), Quantum Generations: A History of Physics in the Twentieth Century, Princeton University Press, p. 62, ISBN 978-0-691-09552-3, https://books.google.com/books?id=ELrFDIldlawC, retrieved on 2021-10-31
- ^ Planck, Max (2 June 1920), The Genesis and Present State of Development of the Quantum Theory (Nobel Lecture), http://nobelprize.org/nobel_prizes/physics/laureates/1918/planck-lecture.html, retrieved on 13 December 2008
- ^ Previous Solvay Conferences on Physics, International Solvay Institutes, http://www.solvayinstitutes.be/Conseils%20Solvay/PreviousPhysics.html, retrieved on 12 December 2008
- ^ أ ب See, e.g., Arrhenius, Svante (10 December 1922), Presentation speech of the 1921 Nobel Prize for Physics, http://nobelprize.org/nobel_prizes/physics/laureates/1921/press.html, retrieved on 13 December 2008
- ^ أ ب ت Lenard, P. (1902), "Ueber die lichtelektrische Wirkung", Annalen der Physik 313 (5): 149–98, doi: , Bibcode: 1902AnP...313..149L, https://zenodo.org/record/1424009, retrieved on 2019-07-03
- ^ Einstein, Albert (1905), "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt", Annalen der Physik 17 (6): 132–48, doi: , Bibcode: 1905AnP...322..132E, http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_132-148.pdf, retrieved on 2009-12-03
- ^ أ ب ت Millikan, R. A. (1916), "A Direct Photoelectric Determination of Planck's h", Physical Review 7 (3): 355–88, doi: , Bibcode: 1916PhRv....7..355M
- ^ Isaacson, Walter (2007-04-10), Einstein: His Life and Universe, Simon and Schuster, ISBN 978-1-4165-3932-2, https://books.google.com/books?id=cdxWNE7NY6QC, retrieved on 2021-10-31, pp. 309–314.
- ^ "The Nobel Prize in Physics 1921". Nobelprize.org. Archived from the original on 2018-07-03. Retrieved 2014-04-23.
- ^ *Smith, Richard (1962). "Two Photon Photoelectric Effect". Physical Review. 128 (5): 2225. Bibcode:1962PhRv..128.2225S. doi:10.1103/PhysRev.128.2225.
- Smith, Richard (1963). "Two-Photon Photoelectric Effect". Physical Review. 130 (6): 2599. Bibcode:1963PhRv..130.2599S. doi:10.1103/PhysRev.130.2599.4.
- ^
- Nicholson, J. W. (1912). "The Constitution of the Solar Corona II". Monthly Notices of the Royal Astronomical Society. 72 (8): 677–693. doi:10.1093/mnras/72.8.677.
- ^ Heilbron, John L. (2013). "The path to the quantum atom". Nature. 498 (7452): 27–30. doi:10.1038/498027a. PMID 23739408. S2CID 4355108.
- ^ أ ب ت McCormmach, Russell (1966). "The Atomic Theory of John William Nicholson". Archive for History of Exact Sciences. 3 (2): 160–184. doi:10.1007/BF00357268. JSTOR 41133258. S2CID 120797894.
- ^ Hirosige, Tetu; Nisio, Sigeko (1964). "Formation of Bohr's theory of atomic constitution". Japanese Studies in History of Science. 3: 6–28.
- ^ J. L. Heilbron, A History of Atomic Models from the Discovery of the Electron to the Beginnings of Quantum Mechanics, diss. (University of California, Berkeley, 1964).
- ^ أ ب Bohr, N. (1913). "On the constitution of atoms and molecules". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 6th series. 26 (151): 1–25. Bibcode:1913PMag...26..476B. doi:10.1080/14786441308634955. Archived from the original on 2023-03-07. Retrieved 2023-07-23.
- ^ Giuseppe Morandi; F. Napoli; E. Ercolessi (2001), Statistical mechanics: an intermediate course, World Scientific, p. 84, ISBN 978-981-02-4477-4, https://books.google.com/books?id=MhInFlnNsREC&pg=PA51, retrieved on 2021-10-31
- ^ ter Haar, D. (1967). The Old Quantum Theory. Pergamon Press. p. 133. ISBN 978-0-08-012101-7.
- ^ Einstein, Albert (2003), "Physics and Reality", Daedalus 132 (4): 24, doi:, http://www.kostic.niu.edu/Physics_and_RealityAlbert_Einstein.pdf, "The question is first: How can one assign a discrete succession of energy values Hσ to a system specified in the sense of classical mechanics (the energy function is a given function of the coordinates qr and the corresponding momenta pr)? The Planck constant h relates the frequency Hσ/h to the energy values Hσ. It is therefore sufficient to give to the system a succession of discrete frequency values."
- ^ "CODATA Value: Planck constant over 2 pi". The NIST Reference on Constants, Units, and Uncertainty. US National Institute of Standards and Technology. June 2011. Retrieved 2011-06-23.
{{cite web}}
: Cite has empty unknown parameter:|month=
(help); External link in
(help)|work=
- ^ "CODATA Value: reduced Planck constant in eV s". physics.nist.gov.
- ^ قالب:SIbrochure9th
- ^ "The Feynman Lectures on Physics Vol. II Ch. 19: The Principle of Least Action". www.feynmanlectures.caltech.edu. Retrieved 2023-11-03.
- ^ "CODATA Value: Avogadro constant". The NIST Reference on Constants, Units, and Uncertainty. US National Institute of Standards and Technology. June 2011. Retrieved 2011-06-23.
{{cite web}}
: External link in
(help)|work=
- ^ Chabay, Ruth W.; Sherwood, Bruce A. (20 November 2017). Matter and Interactions (in الإنجليزية). John Wiley & Sons. ISBN 978-1-119-45575-2.
- ^ "reduced Planck constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Archived from the original on 2023-04-08. Retrieved 2023-09-03.
- ^ Lyth, David H.; Liddle, Andrew R. (11 June 2009). The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure (in الإنجليزية). Cambridge University Press. ISBN 978-1-139-64374-0.
- ^ Schwarz, Patricia M.; Schwarz, John H. (25 March 2004). Special Relativity: From Einstein to Strings (in الإنجليزية). Cambridge University Press. ISBN 978-1-139-44950-2.
- ^ Lévy-Leblond, Jean-Marc (2002). "The meanings of Planck's constant" (PDF). In Beltrametti, E.; Rimini, A.; Robotti, Nadia (eds.). One Hundred Years of H: Pavia, 14-16 September 2000 (in الإنجليزية). Italian Physical Society. ISBN 978-88-7438-003-9. Archived from the original (PDF) on 2023-10-14.
- ^ Huang, Kerson (26 April 2010). Quantum Field Theory: From Operators to Path Integrals (in الإنجليزية). John Wiley & Sons. ISBN 978-3-527-40846-7.
- ^ Schmitz, Kenneth S. (11 November 2016). Physical Chemistry: Concepts and Theory (in الإنجليزية). Elsevier. ISBN 978-0-12-800600-9.
- ^ أ ب Rennie, Richard; Law, Jonathan, eds. (2017). "Planck constant". A Dictionary of Physics. Oxford Quick Reference (7th ed.). Oxford, UK: OUP Oxford. ISBN 978-0198821472.
- ^ The International Encyclopedia of Physical Chemistry and Chemical Physics (in الإنجليزية). Pergamon Press. 1960.
- ^ Vértes, Attila; Nagy, Sándor; Klencsár, Zoltán; Lovas, Rezso György; Rösch, Frank (10 December 2010). Handbook of Nuclear Chemistry (in الإنجليزية). Springer Science & Business Media. ISBN 978-1-4419-0719-6.
- ^ Bethe, Hans A.; Salpeter, Edwin E. (1957). "Quantum Mechanics of One- and Two-Electron Atoms". In Flügge, Siegfried (ed.). Handbuch der Physik: Atome I-II (in الإنجليزية). Springer.
- ^ Lang, Kenneth (11 November 2013). Astrophysical Formulae: A Compendium for the Physicist and Astrophysicist (in الإنجليزية). Springer Science & Business Media. ISBN 978-3-662-11188-8.
- ^ Galgani, L.; Carati, A.; Pozzi, B. (December 2002). "The Problem of the Rate of Thermalization, and the Relations between Classical and Quantum Mechanics". In Fabrizio, Mauro; Morro, Angelo (eds.). Mathematical Models and Methods for Smart Materials, Cortona, Italy, 25 – 29 June 2001. pp. 111–122. doi:10.1142/9789812776273_0011. ISBN 978-981-238-235-1.
- ^ Fox, Mark (14 June 2018). A Student's Guide to Atomic Physics (in الإنجليزية). Cambridge University Press. ISBN 978-1-316-99309-5.
- ^ Kleiss, Ronald (10 June 2021). Quantum Field Theory: A Diagrammatic Approach (in الإنجليزية). Cambridge University Press. ISBN 978-1-108-78750-5.
- ^ Zohuri, Bahman (5 January 2021). Thermal Effects of High Power Laser Energy on Materials (in الإنجليزية). Springer Nature. ISBN 978-3-030-63064-5.
- ^ Balian, Roger (26 June 2007). From Microphysics to Macrophysics: Methods and Applications of Statistical Physics. Volume II (in الإنجليزية). Springer Science & Business Media. ISBN 978-3-540-45480-9.
- ^ Chen, C. Julian (15 August 2011). Physics of Solar Energy (in الإنجليزية). John Wiley & Sons. ISBN 978-1-118-04459-9.
- ^ "Dirac h". Britannica. Archived from the original on 2023-02-17. Retrieved 2023-09-27.
- ^ Shoenberg, D. (3 September 2009). Magnetic Oscillations in Metals (in الإنجليزية). Cambridge University Press. ISBN 978-1-316-58317-3.
- ^ Powell, John L.; Crasemann, Bernd (5 May 2015). Quantum Mechanics (in الإنجليزية). Courier Dover Publications. ISBN 978-0-486-80478-1.
- ^ Dresden, Max (6 December 2012). H.A. Kramers Between Tradition and Revolution (in الإنجليزية). Springer Science & Business Media. ISBN 978-1-4612-4622-0.
- ^ Johnson, R. E. (6 December 2012). Introduction to Atomic and Molecular Collisions (in الإنجليزية). Springer Science & Business Media. ISBN 978-1-4684-8448-9.
- ^ Garcia, Alejandro; Henley, Ernest M. (13 July 2007). Subatomic Physics (in الإنجليزية) (3rd ed.). World Scientific Publishing Company. ISBN 978-981-310-167-8.
- ^ Holbrow, Charles H.; Lloyd, James N.; Amato, Joseph C.; Galvez, Enrique; Parks, M. Elizabeth (14 September 2010). Modern Introductory Physics (in الإنجليزية). New York: Springer Science & Business Media. ISBN 978-0-387-79080-0.
- ^ Polyanin, Andrei D.; Chernoutsan, Alexei (18 October 2010). A Concise Handbook of Mathematics, Physics, and Engineering Sciences (in الإنجليزية). CRC Press. ISBN 978-1-4398-0640-1.
- ^ Dowling, Jonathan P. (24 August 2020). Schrödinger's Web: Race to Build the Quantum Internet (in الإنجليزية). CRC Press. ISBN 978-1-000-08017-9.
- ^ Landau, L. D.; Lifshitz, E. M. (22 October 2013). Quantum Mechanics: Non-Relativistic Theory (in الإنجليزية). Elsevier. ISBN 978-1-4831-4912-7.
- ^ Griffiths, David J.; Schroeter, Darrell F. (20 November 2019). Introduction to Quantum Mechanics (in الإنجليزية). Cambridge University Press. ISBN 978-1-108-10314-5.
- ^ "Planck's constant". The Great Soviet Encyclopedia (1970–1979, 3rd ed.). The Gale Group.
- ^ Itzykson, Claude; Zuber, Jean-Bernard (20 September 2012). Quantum Field Theory (in الإنجليزية). Courier Corporation. ISBN 978-0-486-13469-7.
- ^ Kaku, Michio (1993). Quantum Field Theory: A Modern Introduction (in الإنجليزية). Oxford University Press. ISBN 978-0-19-507652-3.
- ^ Bogoli︠u︡bov, Nikolaĭ Nikolaevich; Shirkov, Dmitriĭ Vasilʹevich (1982). Quantum Fields (in الإنجليزية). Benjamin/Cummings Publishing Company, Advanced Book Program/World Science Division. ISBN 978-0-8053-0983-6.
- ^ Aitchison, Ian J. R.; Hey, Anthony J. G. (17 December 2012). Gauge Theories in Particle Physics: A Practical Introduction: From Relativistic Quantum Mechanics to QED, Fourth Edition (in الإنجليزية). CRC Press. ISBN 978-1-4665-1299-3.
- ^ de Wit, B.; Smith, J. (2 December 2012). Field Theory in Particle Physics, Volume 1 (in الإنجليزية). Elsevier. ISBN 978-0-444-59622-2.
- ^ Brown, Lowell S. (1992). Quantum Field Theory (in الإنجليزية). Cambridge University Press. ISBN 978-0-521-46946-3.
- ^ Buchbinder, Iosif L.; Shapiro, Ilya (March 2021). Introduction to Quantum Field Theory with Applications to Quantum Gravity (in الإنجليزية). Oxford University Press. ISBN 978-0-19-883831-9.
- ^ Jaffe, Arthur (25 March 2004). "9. Where does quantum field theory fit into the big picture?". In Cao, Tian Yu (ed.). Conceptual Foundations of Quantum Field Theory (in الإنجليزية). Cambridge University Press. ISBN 978-0-521-60272-3.
- ^ Cabibbo, Nicola; Maiani, Luciano; Benhar, Omar (28 July 2017). An Introduction to Gauge Theories (in الإنجليزية). CRC Press. ISBN 978-1-4987-3452-3.
- ^ Casalbuoni, Roberto (6 April 2017). Introduction To Quantum Field Theory (in الإنجليزية) (Second ed.). World Scientific Publishing Company. ISBN 978-981-314-668-6.
- ^ Das, Ashok (24 July 2020). Lectures On Quantum Field Theory (in الإنجليزية) (2nd ed.). World Scientific. ISBN 978-981-12-2088-3.
- ^ Desai, Bipin R. (2010). Quantum Mechanics with Basic Field Theory (in الإنجليزية). Cambridge University Press. ISBN 978-0-521-87760-2.
- ^ Donoghue, John; Sorbo, Lorenzo (8 March 2022). A Prelude to Quantum Field Theory (in الإنجليزية). Princeton University Press. ISBN 978-0-691-22348-3.
- ^ Folland, Gerald B. (3 February 2021). Quantum Field Theory: A Tourist Guide for Mathematicians (in الإنجليزية). American Mathematical Soc. ISBN 978-1-4704-6483-7.
- ^ Fradkin, Eduardo (23 March 2021). Quantum Field Theory: An Integrated Approach (in الإنجليزية). Princeton University Press. ISBN 978-0-691-14908-0.
- ^ Gelis, François (11 July 2019). Quantum Field Theory (in الإنجليزية). Cambridge University Press. ISBN 978-1-108-48090-1.
- ^ Greiner, Walter; Reinhardt, Joachim (9 March 2013). Quantum Electrodynamics (in الإنجليزية). Springer Science & Business Media. ISBN 978-3-662-05246-4.
- ^ Liboff, Richard L. (2003). Introductory Quantum Mechanics (in الإنجليزية) (4th ed.). San Francisco: Pearson Education. ISBN 978-81-317-0441-7.
- ^ Barut, A. O. (1 August 1978). "The Creation of a Photon: A Heuristic Calculation of Planck's Constant ħ or the Fine Structure Constant α". Zeitschrift für Naturforschung A. 33 (8): 993–994. Bibcode:1978ZNatA..33..993B. doi:10.1515/zna-1978-0819. S2CID 45829793.
- ^ Kocia, Lucas; Love, Peter (12 July 2018). "Measurement contextuality and Planck's constant". New Journal of Physics. 20 (7): 073020. arXiv:1711.08066. Bibcode:2018NJPh...20g3020K. doi:10.1088/1367-2630/aacef2. S2CID 73623448.
- ^ Humpherys, David (28 November 2022). "The Implicit Structure of Planck's Constant". European Journal of Applied Physics. 4 (6): 22–25. doi:10.24018/ejphysics.2022.4.6.227. S2CID 254359279.
- ^ Bais, F. Alexander; Farmer, J. Doyne (2008). "The Physics of Information". In Adriaans, Pieter; van Benthem, Johan (eds.). Philosophy of Information. Handbook of the Philosophy of Science. Vol. 8. Amsterdam: North-Holland. arXiv:0708.2837. ISBN 978-0-444-51726-5.
- ^ Hirota, E.; Sakakima, H.; Inomata, K. (9 March 2013). Giant Magneto-Resistance Devices (in الإنجليزية). Springer Science & Business Media. ISBN 978-3-662-04777-4.
- ^ Gardner, John H. (1988). "An Invariance Theory". Encyclia. 65: 139.
- ^ Levine, Raphael D. (4 June 2009). Molecular Reaction Dynamics (in الإنجليزية). Cambridge University Press. ISBN 978-1-139-44287-9.
- ^ Bohr, N. (July 1913). "I. On the constitution of atoms and molecules". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 26 (151): 1–25. Bibcode:1913PMag...26....1B. doi:10.1080/14786441308634955.
- ^ أ ب Mehra, Jagdish; Rechenberg, Helmut (3 August 1982). The Historical Development of Quantum Theory (in الإنجليزية). Vol. 1. Springer New York. ISBN 978-0-387-90642-3.
- ^ Sommerfeld, A. (1915). "Zur Theorie der Balmerschen Serie" (PDF). Sitzungsberichte der mathematisch-physikalischen Klasse der K. B. Akademie der Wissenschaften zu München. 33 (198): 425–458. doi:10.1140/epjh/e2013-40053-8.
- ^ Schwarzschild, K. (1916). "Zur Quantenhypothese". Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin: 548–568.
- ^ Ehrenfest, P. (June 1917). "XLVIII. Adiabatic invariants and the theory of quanta". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 33 (198): 500–513. doi:10.1080/14786440608635664.
- ^ Landé, A. (June 1919). "Das Serienspektrum des Heliums". Physikalische Zeitschrift. 20: 228–234.
- ^ Bohr, N. (October 1920). "Über die Serienspektra der Elemente". Zeitschrift für Physik. 2 (5): 423–469. Bibcode:1920ZPhy....2..423B. doi:10.1007/BF01329978.
- ^ Stern, Otto (December 1921). "Ein Weg zur experimentellen Prüfung der Richtungsquantelung im Magnetfeld". Zeitschrift für Physik. 7 (1): 249–253. Bibcode:1921ZPhy....7..249S. doi:10.1007/BF01332793.
- ^ Heisenberg, Werner (December 1922). "Zur Quantentheorie der Linienstruktur und der anomalen Zeemaneflekte". Zeitschrift für Physik. 8 (1): 273–297. Bibcode:1922ZPhy....8..273H. doi:10.1007/BF01329602.
- ^ Kramers, H. A.; Pauli, W. (December 1923). "Zur Theorie der Bandenspektren". Zeitschrift für Physik. 13 (1): 351–367. Bibcode:1923ZPhy...13..351K. doi:10.1007/BF01328226.
- ^ Born, M.; Jordan, P. (December 1925). "Zur Quantenmechanik". Zeitschrift für Physik. 34 (1): 858–888. Bibcode:1925ZPhy...34..858B. doi:10.1007/BF01328531.
- ^ Dirac, P. A. M. (December 1925). "The fundamental equations of quantum mechanics". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 109 (752): 642–653. Bibcode:1925RSPSA.109..642D. doi:10.1098/rspa.1925.0150.
- ^ Born, M.; Heisenberg, W.; Jordan, P. (August 1926). "Zur Quantenmechanik. II". Zeitschrift für Physik. 35 (8–9): 557–615. Bibcode:1926ZPhy...35..557B. doi:10.1007/BF01379806.
- ^ Schrödinger, E. (1926). "Quantisierung als Eigenwertproblem". Annalen der Physik. 384 (4): 361–376. Bibcode:1926AnP...384..361S. doi:10.1002/andp.19263840404.
- ^ Dirac, P. A. M. (October 1926). "On the theory of quantum mechanics". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 112 (762): 661–677. Bibcode:1926RSPSA.112..661D. doi:10.1098/rspa.1926.0133.
- ^ أ ب Mehra, Jagdish; Rechenberg, Helmut (2000). The Historical Development of Quantum Theory (in الإنجليزية). Vol. 6. New York: Springer.
- ^ Dirac, P. A. M. (1930). The Principles of Quantum Mechanics (1st ed.). Oxford, U.K.: Clarendon.
المصادر
- Barrow, John D. (2002), The Constants of Nature; From Alpha to Omega - The Numbers that Encode the Deepest Secrets of the Universe, Pantheon Books, ISBN 0-375-42221-8
وصلات خارجية
- CS1 الإنجليزية البريطانية-language sources (en-gb)
- Short description is different from Wikidata
- Articles with hatnote templates targeting a nonexistent page
- Articles with unsourced statements from October 2023
- Portal templates with default image
- Fundamental constants
- 1900 in science
- Max Planck
- ثوابت فيزيائية